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2. Objectives

The objectives are to create and evaluate theoretical and experimental
methods for active control of nonlinear aeroelastic systems.

3. Status of effort

Considerable progress has been made toward achieving the research
objectives. Both mathematical and experimental models have been
completed, and excellent agreement has been achieved between results from
the two complementary approaches. The uncontrolled model has been fully
evaluated and initial results obtained for the model with active control as
well. This project is right on schedule.

4. Accomplishments/New Findings

The successful correlation between theory and experiment has resulted
in the production of four journal papers (see below). As mentioned above,
the models are now being used to develop and assess various control
strategies which aim to increase the flutter speed of this aeroelastic system.

5. Personnel Supported

The grant provides partial support for the two co-PI's, and half-time
support of the Research Associate Deman Tang. Also, the associated
AASERT award provides support for Mark Conner, a graduate student in
the department of Mechanical Engineering and Materials Science. Part of
this research has formed the basis for his PhD dissertation which was
completed this past summer.

6. Publications

The four publications which are in various stages of completion are:

1) M.D. Conner, L.N. Virgin and E.H. Dowell (1995) "A note
on accurate numerical integration of state-space models for
aeroelastic systems with freeplay". Accepted for publication in
the AIAA journal.



2) M.D. Conner, D.M. Tang, E.H. Dowell and L.N. Virgin
(1995) "Nonlinear behavior of a typical section with control
surface freeplay: Theoretical and Experimental Study".
Accepted for publication in the Journal of Fluids and
Structures.

3) K.D. Frampton, R.L. Clark and E.H. Dowell (1996) "State-
Space Modeling for Aeroelastic Panels with Linearized
Potential Flow Aerodynamic Loading". Accepted for
publication in the Journal of Aircraft, Vol. 33, No. 4, 1996,
pp. 816-822.

4) K.D. Frampton, R.L. Clark and E.H. Dowell (1996) "Active
Control of Panel Flutter with Piezoelectric Transducers".
Accepted for publication in the Journal of Aircraft, Vol. 33, No
4, 1996, pp. 768-774.

7. Interactions/Transitions

A number of presentations and seminars have been given connected
with the parent award. For the AASERT award, Mark Conner attended a
conference to present these results, and PI's have also presented some of
these research findings at various workshops and professional society
meetings including the AFOSR Workshop in Virginia Beach this summer.

8. New discoveries, inventions, or patent disclosures

Initial indications are that the flutter speed of this type of airfoil can
be significantly increased based on numerical simulations and experimental
measurements. Some specialized techniques from nonlinear dynamics have
been used for the first time on an aeroelastic system. No patents have been
issued.

9. Honors/Awards

One of the PI's (E.H. Dowell) is a member of the National Academy
of Engineering. L.N. Virgin recently received tenure and promotion to
Associate Professor, and R.L. Clark was recently awarded a prestigious
CAREER award from the National Science Foundation.
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Active Control of Panel Flutter with Piezoelectric Transducers

Kenneth D. Frampton,* Robert L. Clark,t and Earl H. Dowellt

Duke University, Durham, North Carolina 27708-0302

This article investigates the active control of panel flutter with piezoelectric transducers and including
linearized potential flow aerodynamics. The aerodynamic modeling is accomplished by approximating the
aerodynamic generalized forces with infinite impulse response filters. These filters are coupled to the in

vacuo panel dynamic system in feedback, thus, creating a coupled, aeroelastic system. The panel model
is developed from a Rayleigh-Ritz approach and includes the mass and stiffness effects of a piezoelectric
transducer. Acting as a self-sensing actuator, the piezoelectric transducer Is used to implement direct rate
feedback control. Results of an analytical implementation of this control system demonstrate a significant
increase in the flutter boundaries.

Nomenclature 0 = electromechanical coupling matrix

A, B, F, G = state-space matrices A = poU.a3ID

a = panel length, chord Aao = p~,alp,h,

a- = speed of sound AP = prhplph,

b = panel width, span p = density

C, = piezoelectric capacitance matrix Cr = DPID,

D = EI/(I - v2), stiffness T = integration dummy variable

D_ = aerodynamic influence coefficient 4(x, y, z, t) = fluid velocity potential

d31  = piezoelectric constant T&(x, y) = modal expansion functions

H,•(t) = aerodynamic influence function
h = thickness Subscripts
l,(t) = aerodynamic influence function a = aerodynamic
i = output current vector m, n = modal indices
K = stiffness matrix p = piezoelectric
M = Mach number s = structural
M" = structural mass matrix
M, = piezo mass matrix Introduction
N = number of expansion modes M HE recent emergence of technology capable of perform-
P(z) = approximate z-transfer function. ing the necessary computational and actuation tasks has
p(x, y, t) = aerodynamic pressure led to the application of active control to many problems in
Q,(t) = generalized force dynamics. However, while much attention has been focused in
qr(t) = generalized coordinate the literature on active control of wing flutter, very little has
r,(s) = q,(s)ih, been done in the area of panel flutter control. The phenomena
S, = aerodynamic influence coefficient of panel flutter has been studied for many years, but the few
s, = piezo area moment of inertia available references that apply active control to panel flutter
s = rU'/a

tuse piston theory or quasisteady aerodynamics as the working

U. = freestream velocity model."2 The use of piston theory is not without good reason
U = state-space input vector since it is reasonably accurate at higher Mach numbers and
f) = VI/Vr, modeling the effects of linearized potential flow (which is nec-
v_ = piezo saturation voltage essary for Mach numbers below 1.5), in a state-space repre-
vý = input voltage sentation suitable for control investigations is difficult. How-

w(x, y, t) = panel displacement ever, it is the transonic and low supersonic range that is usually

x, y, z = Cartesian coordinates most critical for flutter. For this reason, the inclusion of full

x = state vector potential flow aerodynamics is important to effective control

y = output vector system design.

a, y = Fourier transform variables This article investigates the active control of panel flutter

E = d3,va 2E,,S,/Dh,(l - v,) including linearized potential flow aerodynamics. Develop-
ment of the aeroelectroelastic model consists of combining the
electroelastic panel model developed by Hagood et al.3 with

Received May 21. 1995; revision received Jan. 24, 1996; accepted the aeroelastic panel model introduced by Frampton et al." The
for publication Feb. 12, 1996. Copyright © 1996 by the authors. Pub- electroelastic panel model combines the dynamics of a plate
lished by the American Institute of Aeronautics and Astronautics, Inc., with the dynamics of piezoelectric transducers through a Ray-
with permission. leigh-Ritz formulation. The aeroelastic panel model is created

*Graduate Research Assistant, Department of Mechanical Engi- by coupling a set of aerodynamic force approximating filters
neering and Materials Science. Student Member AIAA. in feedback with an in vacuo panel model. The set of filters

tAssistant Professor, Department of Mechanical Engineering and

Materials Science. Member AIAA. is constructed from the aerodynamic influence functions as de-
:J. A. Jones Professor and Dean, School of Engineering, Depart- veloped by Dowell, 5' using Prony's method.

ment of Mechanical Engineering and Materials Science. Fellow The control scheme used in this investigation is direct rate
AIAA. feedback (DRFB). This is implemented by using a piezoelec-
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tric transducer simultaneously as a sensor and actuator as de- Z
scribed by Anderson et al.,7 Dosch and Inman,8 and more re-
cently Cole and Clark.' The piezoelectric transducer sensor Uo
signal, which is proportional to the strain rate, is amplified and
fed back to itself as a control signal.

The effectiveness of this control system in delaying the onset
of flutter is presented. In addition, the importance of consid- P: id , i :
ering full potential flow aerodynamics in a control system de-
sign is demonstrated. Also, the effect of piezoelectric trans-
ducer saturation is addressed.

Aeroelectroelasticity a x

Panel and Piezoelectric Transducer Dynamics
The panel in this investigation combines the aeroelastic Fig. 1 Panel coordinate system.

modeling introduced by Frampton et al.4 with the electroelastic
modeling described by Hagood et al.3 This method employs a where the hat [^], indicates that all dimensional terms have
Rayleigh-Ritz formulation to discretize the coupled equations been pulled out of the matrix and included in the nondimen-
of motion for the piezoelectric sensor/actuator and the aero- sional coefficients.
elastic panel. The combination of the two, which includes the The generalized forces Q,(t) are found by solving the partial
mass and stiffness effects of the panel and the piezoelectric differential equation describing the velocity potential in an in-
transducer, is referred to as an aeroelastic piezostructure. viscid, irrotational fluid moving parallel to the x axis

This method assumes a separable solution using the in vacuo
panel eigenfunctions and generalized coordinates of the form 2 u a243 + a o it

V2 a0+2 _ýL -+(J , U2a10)N 6 at 2  
a axat a xOx(

w(x, y, t) = , Y P.(x, y)q.(t) (M)

subject to the boundary conditions for a panel embedded in an

and a linear voltage distribution across the piezoelectric thick- infinite baffle

ness. The resulting actuation equations of motion with no
structural damping are (aw aw

-+ U - on the panelSat (11)
[M. + M,]{4} + [K + Kp]{q} = [0]{v) - p..pU{Q) az 10 off the panel

and the rate sensor equations are

[E]'14) + [C,{1}) = {i) (3) and a finiteness or radiation condition as z approaches infinity.
The solution can be obtained by taking a Laplace transform

where with respect to time and a double Fourier transform with re-
spect to the x and y spatial coordinates. The transformation is

{q} = {q, q 2 ... q.'} (4) applied to Eqs. (10), (11), and Bernoulli's equation:

{Q} = (Qi Q2  .. Q.) (5) o (12)

{v) =(V v2 ... v.}r (6) L at ax]

The aerodynamic generalized forces Q. are a function of the while incorporating Eq. (1). Details of the solution process can
aerodynamic pressure be found in Refs. 5 and 6.

The solution yields the generalized aerodynamic forces on
fo F° p(x, y, t) the panel that are given here asQ.(t) = J J poU:. Pa(x, y) dx dy (7)

N

Definitions of the previous matrices can be found in Ref. 3. Q.(t) = Q'" (13a)
The coordinate system for .the panel is shown in Fig. 1.

Full Potential Flow Generalized Forces where
Consider the case of a simply supported panel with the fol-

lowing eigenfunctions (only one mode in the y direction is
used for simplicity): Q_(t) = q.(t)S,, + 4.(t)D-, + J q,.(')H,,(t - r) dr

,P.(x, y) = sin[(nir/a)xlsin[(7r/b)y] (8)

In this case the panel equation of motion [Eq. (2)] can be + 4q.(r)I,(t r) dr (13b)
expressed nondimensionally as fo

[ + 4/bp//pl{P}+[K, + 4L- /kp]{r} S,., = if-f",dy dx (13c)

A S} F f b
-8 A [0i} -4A.& (9) D_, - MU° .. dy dx (13d)
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H,(t) _4i 2 M 2  _ j. f,7+ 2e-t

X JI[atN-a 2 + .y2] da dy (13e)

IU(t) -- + e- Panel System

X J1[a %t •a2 + 72] da dy (13f) ..............................................................

G_ f j f ,(x, y)e-•"--) dy dx L y F B.

x 4.I'(x, y)e"'x*÷" dy dx (13g) Aero.y.annc.System

Fig. 2 State-space schematic of the complete aeroelastic system.

The integrals in Eqs. (13c), (13d), and (13g) can be per-

formed analytically for most panel eigenfunctions. Equations approximations to the influence functions can be readily trans-
(13e) and (13f), which define the aerodynamic influence func- formed into an Ith order infinite impulse response (IIR) filter
tions, must be evaluated numerically, of the form

Piston Theory Generalized Forces i-i i-i

Piston theory is presented here for comparison with the full A_(z)= az-'/,biz-' (16)
potential flow solution developed previously. Piston theory as- 1-0 10

sumes that the pressure acting on the panel is equivalent to the
pressure acting on a piston in a tube: As an example, suppose the values of the influence function

H,,.(iT) are used to solve for the filter coefficients in Eq. (16).
[Lw + wL When provided with an input signal that represents the panel

p = p t + Ua (14) generalized coordinate q,(iT), this filter would output an ap-
I a proximate convolution of q,(iT) with H,.(iT). Similarly, a fil-

The total piston velocity includes a convection term Uj(8w/ ter could be constructed from l,(iT) and provided with a sig-
as well as a direct velocity term acwot. Here the plate is nal representing 4,(iT). Summing the outputs of the two filterstx), as wenl as a tve te i w/Ot.p e re the plate. would yield an approximation to the dynamic portion of Eq.

the equivalent piston and the tube is perpendicular to the plate. (13b). Details of this process may be found in Ref. 4.
Combining Eqs. (1) and (14) and inserting into Eq. (7) An approximate filter can be found, as shown previously,

yields the piston theory generalized aerodynamic forces for each aerodynamic influence function H-,(t) and I,,.(). A

N complete set of these filters can then be summed according to
Q.() Q (15a) Eqs. (13a) and (13b). This would yield a dynamic system that

.( (15a has the generalized coordinates q,(t) and 4.(t) as the inputs
and the generalized aerodynamic forces Q.(t) as the outputs.

where This system is then coupled as feedback on the panel resulting
in a complete aeroelastic system. This is shown schematically

= q,.(t)S,. + 4,.(t)D. (15b) (in state-space notation) in Fig. 2.

1 r b State-Space Formulation
S, = - 4-a T. dy dx (15c) The actuation equations of motion for the panel describedM f. f ax in Eq. (2) can be expressed in state variable form as

D_ = 'P.*. dy dx (15d) I, = A,x, + Bu, (17a)

y, = Fx, (17b)
Note that this result is identical to that obtained from full

potential flow analysis if the influence functions [H,_(t) and where
l_(t)] are ignored.

Approximate Generalized Forces xjJ U= u = vt) J Y = 4 (17c)
Since the generalized aerodynamic forces represented in Eq. it) W

(13b) are a function of the panel generalized coordinates, they [ 0/]
can be viewed as dynamic feedback on the panel. These feed- A, oJ (17d)
back dynamics are characterized by the influence functions -[M, + M]-[+ K] 0
H,(t) and I,,(t), which represent aerodynamic impulse re- [ 0 0 1
sponses, and the influence coefficients S,_ and D,_, which are B, = UM MI (17e)
instantaneous or feed-through dynamics. p.U.M,,+ M,] (M, + MI1®E

Since there is no closed-form solution for the generalized I,1
forces some approximation must be made. The approach sug- F,= E) (17f)
gested here is to construct digital filters that approximate these Li
dynamics. A reduced order recursive filter may be constructed The approximate filters of Eq. (16) can be converted to state-
by applying Prony's method to the aerodynamic influence space form.1 2 Each approximate filter associated with the in-
functions.'°" Prony's method approximates an impulse re- fluence function H_(t) and l1.(t) has a state-space represen-
sponse (in this case the influence functions) with a set of ex- tation with matrices {A,,_, B,_, Fq_, GH_} and {A,_, A,_,
ponential functions in a least-squares sense. These exponential F,_, G,_}, respectively. The complete set of state-space repre-
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sentations can be assembled to form the approximate aerody- 1200

namnic system as follows:

g 1 000•
XaýA~a+Ba(18a)

yý= F~x, + GAu (I 8b)80

where
r

y= {Ql(t) Q2(t) ... Q,(t)}r (18c) 400
----- Pý2 O~l R-~, No P~e.-

Eý 4j Iz31- mt R- Fl-ow. Wih -

u. = {q, q4 q2 q2  q q} T  (18d) 0 - no,.soh o
om~ o z 2G-4 P- The N, Po

A, 0 00

0AR 0 0 1.0 1.2 1.4 1.6 1.8 2.0

A . : : (18e) Mach Number

L 0 0.. AH j Fig. 3 Af vs M for a panel aspect ratio of a/b = 1.L0 0 ... 0 A,_ _

BR,, 0 ... 0 0 below that predicted by piston theory. These results are con-
0 0 0 sistent with those obtained by Dowell.5'6 A more detailed dis-

B,: ... 0 cussion of the model validity can be found in Ref. 4.

0 0 ... B,,R 0 Collocated Direct Rate Feedback Control
0 0 ..- 0 Bl,. Collocated direct rate feedback control is a well-documented

B = :(18f) form of control which, in the absence of sensor/actuator dy-
BH_, 0 ... 0 0 namics and rigid body modes, has guaranteed stability for any

0 Be,, -- " 0 0 positive feedback gain. 5

: : ". : : Collocation is achieved by using a piezoceramic transduc-
0 0 ... B,,_ 0 tion device as a sensoriactuator,9 i.e;, simultaneously as a sen-
0 0 ... 0 B,_ sor and actuator. 7-9'16 By applying the appropriate circuitry to

the piezoelectric transducer, the portion of the piezoelectric
F , FR2, F1,1output that is proportional to the structural velocity can be

F ,2= F, .. F•. F. (18g) isolated. This is equivalent to rendering Eq. (3) as
F . (I 8g)•

i F,., FH,_ [O]{4}={i} (19)

G ,,, G 1,ý G,, Direct rate feedback control consists of feeding back a signal
G I Gk,:j .. . .: (pr8h) proportional to the sensor current i from Eq. (19) as the voltage

= :12 :2~ 18h) input v to Eq. (2).

LGt., Q.I, ".. GH_ G'_ Results

and the influence coefficients are incorporated as follows: The effectiveness of collocated direct rate feedback control
is demonstrated by applying the control to the aeroelastic panel

G_= G._ + S_,, (18i) model and finding the flutter instability boundaries. All results
in this section are for the following parameters: pA = 0.5, /Xo

G = G,_ + D_,, (18j) = 0.1, o" = 1.2, s = 130, and a/b = 1.0. These parameters
correspond to typical values for G- 1195-type piezoceramic and

The aerodynamic states x. are of mathematical construct and a steel panel. Previous investigations have shown that mass
have no physical significance. The panel and aerodynamic ratio has relatively little effect on the flutter boundaries,"4

state-space models can then be coupled together as shown in therefore, the mass ratios p., and p.a are held constant.
Fig. 2. Selection of the piezoelectric transducer location is very im-

The accuracy of this model can be demonstrated by com- portant for a successful control system design. Formal opti-
paring the flutter boundaries with those reported in the litera- mization of transducer location was not performed, however,
ture. 56 '' The flutter boundaries are determined by increasing investigation into the aeroelastic mode shapes suggests a good
the nondimensional dynamic pressure A while holding all other location. It is well known that piezoelectric transducers are
parameters fixed. Flutter occurs when one of the system ei- most effective when located in regions of high strain (i.e., high
genvalues moves into the right-half-plane. panel curvature). Since the goal is to control flutter, the flutter

A comparison of flutter dynamic pressure vs Mach number mode shapes must be considered when looking for advanta-
is shown in Fig. 3. Results are illustrated for a panel with mass geous locations. This approach was also considered by Scott
ratios of A. = 0.1 and p-, = 0.5, o- = 1.2, e = 130, and dimen- and Weisshaar.'
sion ratio a/b = 1, using a four-mode panel model. The figure The normalized flutter mode shapes in the chordwise direc-
shows the flutter boundaries for the plate with and without a tion are shown in Fig. 4 for various Mach numbers. Note the
piezoelectric transducer for both full potential flow and piston strong influence of the 1st and 2nd in vacuo modes on the
theory aerodynamics. Note that the presence of the piezoelec- flutter mode. The region of maximum strain at each Mach
tric transducer slightly increases the flutter boundary. This is number occurs very near x/a = 0.7. For this reason a transducer
because of the increased panel mass with the transducer. Also coverage of 0.6 < x/a < 0.8 and 0.4 < ylb < 0.6 was selected.
note that the two aerodynamic theories approach each other This chordwise location also corresponds to the maximum de-
asymptotically as the Mach number increases. However, for lay in the migration of open loop zeros into the right-half-
Mach numbers below 1.5 the theory incorporating linearized plane. The importance of the zero migration delay will be dis-
potential flow aerodynamics predicts flutter boundaries well cussed in more detail later.
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Results from this analysis are shown in Fig. 5 for the full poles are omitted for clarity). Results in Fig. 7 are for a Mach
potential flow model and several feedback gains. Figure 5 number of 2.0 and dynamic pressure A = 1300, which is greater
demonstrates that, except near M = 1.0, the use of direct rate than the open-loop flutter dynamic pressure, but less than the
feedback control is equally effective at all Mach numbers in limiting dynamic pressure. Note in Fig. 7 that as the feedback
terms of a percentage increase in flutter dynamic pressure. gain is increased the unstable poles are drawn toward the open-
Note in Fig. 5 that there is a maximum flutter boundary that loop zeros that are located in the left-half-plane. Therefore,
direct rate feedback can achieve. This is demonstrated by the given enough feedback gain, the system can be stabilized.
coincidence of the flutter boundary for feedback gains of 0.1 Unfortunately, it is not always the case that the open-loop
and 0.2. zeros, toward which the unstable poles are drawn, lie in the

This behavior is better illustrated in Fig. 6, which shows the left-half-plane. The location of these open-loop zeros is a func-
change in flutter nondimensional dynamic pressure with in- tion of M, mass ratio p, the sensoriactuator location, and most
creasing feedback gain for three Mach numbers. Also included strongly a function of the dynamic pressure A. This depen-
in Fig. 6 are similar results for a piston theory aerodynamic dence is demonstrated in Fig. 8, which shows the locus of the
model. It is apparent in Fig. 6 that the piston theory model system zeros as a function of A. This plot is for a Mach number
overpredicts the control effectiveness, particularly at lower of 2.0. Note the migration path of the zeros. At a dynamic
Mach numbers, compared to the full potential flow model, pressure of A = 1593, a pair of zeros moves into the right-half-
Also note that the difference between the full potential flow plane. Piston theory predicts that the zero will move into the
model and the piston theory model increases with increasing right-half-plane at a dynamic pressure of A = 1903. This ac-
gain. counts for the large difference in maximum flutter dynamic

An important result demonstrated in Fig. 6 is that, at a fixed pressure depicted in Fig. 6.
Mach number, there is a maximum flutter dynamic pressure A root locus similar to that in Fig. 7, but with A = 1630, is
that direct rate feedback control can achieve. This is evident shown in Fig. 9. Note how the pair of unstable poles is moved
in the asymptotic behavior of the flutter boundaries with in- toward a pair of zeros in the right-half-plane. Therefore, no
creasing gain shown in Fig. 6. In other words, for a fixed Mach amount of feedback gain could stabilize the system. The point
number, there is a limiting nondimensional dynamic pressure at which the open-loop zeros moves into the right-half-plane
A, beyond which direct rate feedback control cannot stabilize is the closed-loop flutter boundary. Beyond this point, even
the system. with direct rate feedback control, the panel will flutter.

This limitation is because of the mechanism by which direct
rate feedback control stabilizes the system. Stabilization is ac-
complished by moving the open-loop poles toward the open- 20D00 MNo. =11'.
loop zeros. This is demonstrated in Fig. 7, which shows the/ 00 0 ,
closed-loop root locus for a four-mode panel (aerodynamic 2
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0.................... Fig. 6 Flutter boundaries with varying feedback gain.
-0.50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Plate Chord, xla 200 I
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Fig. 7 Root locus of the full potential flow model (A = 1300) with

Mach Number feedback gain varying from 0 (corresponding to the open-loop
Fig. 5 Af vs M for various feedback gains. pole, x) to - (corresponding to the open-loop zero, c).
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Fig. 8 Zero locus of the full potential flow model with nondi- fects the flutter dynamic pressure is increased by 55% at M =
mensional dynamic pressure varying from A = 0 to A = 1600 1.2, 28% at M = 1.5, and 26% at M = 2.0, as shown in
(0 = zero). Fig. 6.

Also note that while the application of collocated direct rate
200 I feedback control is effective for panel flutter control it is also

(4. 1).Mo& effective for disturbance rejection. This is demonstrated in Fig.
150 10, which shows the open- and closed-loop transfer functions

oo for three Mach numbers. In each case the dynamic pressure is
100 •--------Mod just below the corresponding flutter dynamic pressure for that

50 - o Mach number. The effect of direct rate feedback control in this
12.,)Mod, (1,m& case is to add damping to the near flutter poles, thus reducing

the spectral peak.

E -50 - o Conclusions

The active control of panel flutter has been investigated in-
-100 cluding full linearized potential flow aerodynamic theory ap-

propriate for the full transonic and supersonic Mach number
-150 range. Direct rate feedback control from a sensoriactuator pi-

ezoelectric transducer was modeled and its effectiveness in
-200' controlling flutter instability was demonstrated. It was shown

-80 -60 -40 -20 0 that this type of control is capable of significantly increasing
Real Axis the flutter nondimensional dynamic pressure. It was also

Fig. 9 Root locus of the full potential flow model (A = 1630) with shown that this type of control is limited by the migration of
feedback gain varying from 0 (corresponding to the open-loop the open-loop zeros into the right half-plane, thus, beyond a
pole, x) to - (corresponding to the open-loop zero, 0). certain dynamic pressure, preventing the system from being

stabilized. This zero migration to the right half-plane defines

Although this demonstrates a limit to the amount that direct a new flutter boundary for the closed-loop aeroelastic panel.
rate feedback control can increase the flutter boundary, other A second limitation was demonstrated in the saturation of the

feedback control techniques could potentially increase the piezoelectric transducer.
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State-Space Modeling for Aeroelastic Panels with Linearized
Potential Flow Aerodynamic Loading

Kenneth D. Frampton,* Robert L. Clark,t and Earl H. Dowellt
Duke University, Durham, North Carolina 27708

This article presents a new method for the state-space modeling of aeroelastic panels subject to line-
arized potential flow aerodynamic loading. This is accomplished by approximating the aerodynamic gen-
eralized forces on the panel with discrete, infinite impulse response (IIR) filters. The HR filters are created
using Prony's method for a least-squares-fit to the aerodynamic influence functions. These filters are
coupled to the in vacuo panel dynamic system as feedback, creating a coupled, aeroelastic system. The
accuracy of the model is established by comparing the panel flutter boundaries of the approximate system
with those found in past studies.

Nomenclature K = Laplace domain variable

A, B, F, G = state-space matrices A = pU•a3ID

a = panel length, chord /Y = p~alpp
a,, da = filter coefficients P. = density of fluid

a- = speed of sound pP = panel mass per area

= panel width, span T = integration dummy variable
b,, = filter coefficients O(x, y, z, t) = fluid velocity potential

D = EI/(I - V,2), panel stiffness qP,(x, y) = modal expansion functions

D_ = aerodynamic influence coefficient Wo = modal natural frequency

H,_(t) = aerodynamic influence function Subscripts
h = panel thickness a = aerodynamic
I = approximate infinite impulse response filter m, n = modal indices

order p = panel
L l•,(t) = aerodynamic influence function

Jl[.] = Bessel's function Introduction
SM = Mach number ANEL flutter is the self-excited dynamic instability of
M. = modal mass I plate-like structures exposed to fluid flow. This aeroelastic
N = number of expansion modes phenomenon has received much attention in the past and is
P(z) = exact z transfer function very important toward the successful development of super-
P(z) = approximate z transfer sonic aircraft such as the National Aerospace Plane, the High
&K) = approximate Laplace transfer function Speed Civil Transport, and the Advanced Tactical fighter, to
p(x, y, 0) = aerodynamic pressure name a few. Dugundji' published an excellent paper on early
Q(t = generalized force investigations into linear panel flutter, whereas Gray and Mei2

q(t) = generalized coordinate gave a review of more recent efforts including nonlinear ef-
R = finite impulse response filter order fects. However, the vast majority of work has been performed
r,(s) = q,(t)/h assuming piston theory as the aerodynamic model. The use of
S_, = aerodynamic influence coefficient piston theory is not without good reason, since it is reasonably
s = tUJa accurate at higher Mach numbers and modeling the effects of
T = sample period linearized potential flow, which is necessary for lower Mach
t = time numbers (M < 1.5), is challenging. Since low supersonic flight
U. = freestream velocity speeds are utilized by many aircraft, it is important to consider
u = state-space input vector the effects of full potential flow aerodynamic loading in panel
w(x, y, t) = panel displacement flutter investigations.
x, y, z = Cartesian coordinates The few references that include linearized potential flow aer-
x = state vector odynamics focus on the determination of flutter boundaries,
y = output vector and subsequently, the limit cycle oscillations in the postflutter
a, 'Y = Fourier transform variables (nonlinear) regime. These models, however, are not conducive

to the application of modem control theory. A method of build-
ing a state-space model of the coupled aeroelastic system

Received May 21, 1995; revision received Dec. 2. 1995; accepted would permit the determination of flutter boundaries as well
for publication Dec. 29, 1995. Copyright © 1996 by the authors, as provide a means of applying modem control theory to the
Published by the American Institute of Aeronautics and Astronautics, problem. While this has already been accomplished for typical
Inc., with permission. wing sections,34 it has yet to be done for panels.

*Graduate Research Assistant, Department of Mechanical Engi- This article presents a method for constructing a state-space
neering and Materials Science. Student Member AIAA.

tAssistant Professor, Department of Mechanical Engineering and model of the coupled aeroelastic panel including linearized
Materials Science. Member AIAA. potential flow aerodynamics. This is accomplished by approx-

tJ. A. Jones Professor and Dean, School of Engineering. Fellow imating the aerodynamic generalized forces on a panel, as de-'
AIAA. veloped by Dowell,56 with discrete, infinite impulse response
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(IIR)' filters. These filters are coupled to the in vacuo panel Z

dynamic system as feedback, creating a coupled, aeroelastic
system. The accuracy of the model is established by comparing U
the panel flutter boundaries of the approximate system withthose found in the literature.- 9

Panel Dynamics and Generalized Forces
The partial differential equation (PDE) of motion describing /

a thin, uniform panel is'° b

r aw(x, y. t) + aw(X, Y, t) a4w(x, y, t)1D [ X4 + aiaY2  + a a

a2w(x, y, t)

+ pP at2 + p(x, y, t) = 0 (1) Fig. 1 Panel coordinate system.

subject to the boundary conditions for a panel embedded in an
The coordinate system'for the panel is shown in Fig. 1. infinite baffle

A separable expansion solution is assumed using the in
vacuo orthogonal panel eigenfunctions and generalized coordi- lOw awnates: acp -- + U.Ox on the panelnaes a t ax(10)

N az 0 off the panel

w(x, y, t) = E "l'P(x, y)q,(t) (2)

"and a finiteness or radiation condition as z approaches infinity.
The solution can be obtained by taking a Laplace transformSubstituting Eq. (2) into Eq. (1), multiplying by an arbitrary with respect to time and a double Fourier transform with re-

expansion function T,.(x, y), and integrating over the domain

yields a set of ordinary differential equations of the form: spect to the x and y spatial coordinates. The transformation is
applied to Eqs. (9) and (10) and Bernoulli's equation,

M[4.(t) + w&2q.(t)] + p.U.Q(t)= 0 (3) . /0_ a
p =--po I + Uo ,-J (11)

where at X

while incorporating Eq. (2). Details of the solution are dis-
fd (4) cussed by Dowell.' 6

J0 = The solution yields the generalized aerodynamic forces on
the panel, which are given here as

M 2c'f f [alpi'.,ý
M b D O ax, Q.(t) Q_(t) (12a)

+ (V!.. a2 y.. + a2lp a2p."
aX2 ayx ax? ay2 ] where Q_.(t) is the force on the nth panel mode because of

92,p a2'1' a2P, 1 the motion of the mth panel mode, such that02xF20 I +dx dy (5)
+ 21 -•)Oxay axay 0y2  ay+ 21 xa aay W a, x y 5) Q.(t) = q,.(t)S.• + 4l,(t)D._ +fo tq,.(,r)H.•(t -r•) dT

and the generalized forces are a function of the aerodynamic

pressure

Q f(b6 + 4,f(T)I.(t - 7) dr (1 2b)
QJ(t I p T, y , y)t)y 6

pU. ( y) dI dy (6)1,- dy cx (12c)
Full Potential Flow Generalized Forces

Consider the case of a simply supported panel with the fol- 1 a b

lowing eigenfunctions (only one mode in the y direction for D_,= - M JJ ,.V, dy dx (12d)
simplicity such that n = 1, 2. N): -

_,,

qP,(x, y) = sin[(nirla)x]sin[(ir/b)y] (7) H_.(t) -- 4, 2 M 2 java+e

In this case, the panel equation of motion, Eq. (3), can be X J1(at/& + y2 ) da dy (12e)
expressed nondimensionally as 1 r r

0) = 4-1. + -
&n(s) + (pJkA)7'[n 2 + (a/b)2]2r.(s) + 4AQ,(s) = 0 (8) 4 -rr2 -

X J1(atVW + 3)da dy (12f)
The generalized forces Q,(t) are found by solving the PDE

describing the velocity potential in an inviscid, irrotational Gm f f =fo (x' y)e- =")dydx

fluid moving parallel to the x axis ye dyd

a 2 a2
0 axa 2"ax 2k ' 0 9a. + 2U + U2

a = 0 (9) X f j ,(x, y)e'("÷'Y' dy dx (12g)
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The integrals in Eqs. (12c), (12d), and (12g) can be per- represented by Eq. (12b), which has two impulse responses of
formed analytically for most panel eigenfunctions. Equations H,_,(iT) and I,,,(iT). Note that H,(iT) and 1,(iT) are discrete
(I 2e) and (I 2f), which define the aerodynamic influence func- time approximations of Eqs. (12e) and (12f).
tions, must be evaluated numerically. Equation (15) can be used to represent the aerodynamics of

Eq. (12b) by substituting a numerically calculated influence
Piston Theory Generalized Forces function [H_(iT) or I,,(iT)] for h(iT) in Eq. (15). However,

Piston theory is presented here for comparison with the full constructing a state-space model of an FIR filter requires as
potential flow solution developed previously. Piston theory as- many states as filter coefficients. Therefore, any reasonable
sumes that the pressure acting on the panel is equivalent to the discrete temporal resolution of the influence functions would
pressure acting on a piston in a tube: result in a very high-order state-space model.

Fortunately, a reduced order recursive filter may be con-
law wstructed by applying Prony's method to the influence func-

p = paa,,a. + U, Lw (13) tions..4,.. Prony's method approximates an impulse response(in this case the influence functions) with a set of exponential

The total piston velocity includes a convection term Uo(Owl functions in a least-squares sense. These exponential approx-

Ox), as well as a direct velocity term awlOt. Here the plate is imations to the influence functions can be readily transformed

the equivalent piston and the tube is perpendicular to the plate. into an Ith order IIR filter of the form:

Combining Eqs. (2) and (13) and inserting into Eq. (6) 1- 1 1-1
yields the piston theory generalized aerodynamic forces /i"(z) = az- b (16)

/g/

Q(= , Q-(t) (14a) Equating like powers of the FIR representation in Eq. (15) with
the IIR representation of Eq. (16), and replacing the temporal

where argument iT with subscripts, yields an overdetermined set of
equations (for R >> I) of the form:

Q = q.(t)S+.,+ ,(t)D. (14b) r0} (h7]
b 1b=)b (17a)

S ,M = f~ a/ 4 P ,dy dx (14c) 
he

MJJO ax where

Dm = -'Mo 11.11. dy dx (14d)

a,
Note that this result is identical to that obtained from full

potential flow analysis if the influence functions [Ha,(t) and(
l,,,(t)] are ignored. (17b)

"Approximate Generalized Forces 0

Many techniques for approximating the aerodynamic loads
on structures (mainly wing sections) have been published in 0

the past. Jones"' was one of the earliest, whereas Leishman' 2

and Morino et al.3 have more recently investigated Laplace/ ho 0 ... 0
frequency domain approximations of the aerodynamic loads. h, h, ... 0
However, the form of the aerodynamic forces expressed in
Eqs. (12) does not lend itself to direct application of these hl-I hl-2 "" 0
methods. Utilization of the techniques in Refs. 1, 9, and 10 [hi] (17c)
would require transforming the time domain representations inh 2J = h, hl-, "'" ho
Eqs. (12) to the frequency domain. This additional computa- hl+, h, ... h
tional step would introduce more error into the solution. There-

* fore, a more direct time domain approximation technique was
sought. hR,- hR-2 ... hR-,- _

Since the generalized aerodynamic forces represented in Eq.
(12b) are functions of the panel generalized coordinates, they b,
can be viewed as dynamic feedback on the panel. These feed- b,
back dynamics are characterized by the influence functions {b} = (17d)

H,_(t) and l,,.(t), which represent aerodynamic impulse re- bi
sponses, and the influence coefficients S. and D-, which are
instantaneous or feedthrough dynamics. The lower portion of this system of equations, 0 = h2b is

Since there is no closed-form solution for the generalized solved, in a least-square sense, to give the denominator coef-

forces, some approximation must be made. The approach sug- ficien, in eq. ( en th e nu er ator coeff

gested here is to construct digital filters that approximate these ficients bb in Eq. (16). Then the numerator coefficients a, can

dynamics. A finite impulse response (FIR) filter of the form: be found uniquely from the upper portion of Eq. 07a), a
hlb.

R-1 At this point, the approximate filter of Eq. (16) can be con-

P(z) =Z h(iT)z-' (15) verted to a continuous time (Laplace domain) representation
-O through a bilinear transformation. This transformation is ac-

complished by substituting for z in Eq. (16) as follows:
exactly represents a dynamic system having a discrete time
impulse response h(iT) and a z-domain transfer function P(z) 1 + (T12)K
(Ref. 13). In this case the dynamic system is the aerodynamics 1 - (T/2)K (18)



Note that care should be taken in the sL. ion of T. Significant feedback on the pane ;ulting in a complete aeroelastic sys-
errors can result if the sample period is not sufficiently small. tem. This is shown schematically (in state-space notation) in
Application of the bilinear transformation results in a contin- Fig. 3 and will be discussed in more detail in the next section.
uous time filter of the form:

State-Space Formulation
I-I /I-I The general equation of motion for the panel, described in

P,(K) = E b. jKý (19) Eq. (3), in the absence of structural damping, can be expressed
i-o il- i.in state-space form as

where di and b, are new coefficients. xp = Apxp + Bpu, (20a)
As an example, suppose the values of the influence function y, = Fpxp (20b)

H,,(iT) are used to solve for the filter coefficients in Eq. (17a).
When provided with an input signal that represents the panel where
generalized coordinate q,(iT), this filter would output an ap-
proximate convolution of q,(iT) with H,,(iT). Similarly, a fil- xp ={q q2  ' q. ql1T  (20c)
ter could be constructed from IJ(iT) and provided with a sig-
nal representing q,,(iT). Summing the outputs of the two filters 0 0 ... 0 1 ... 0
would yield an approximation to the dynamic portion of Eq.
(12b). This process will be covered in more detail later.

The accuracy of this type of approximation is demonstrated Ap = 0 0 "- 0 0" 1
in Fig. 2. This plot shows the generalized force Qi, for a unit 1o1  0 0 0 ". 0 (20d)
step change in the generalized coordinate q,, as represented in 0 -w 2  0 0 ... 0
Eq. (1 2b). The results are presented for a panel of aspect ratio
a/b = 1.0, mass ratio j. = 0.1, and M = 2.0. Three curves are
shown, one representing direct calculation from the influence 0 0 &.t2 0 ". 0_
function H11(iT), while the others represent the step response
of an 8th- and 16th-order approximating filter with a sample 0 0 ... 0
period of T = 0.1. As one would expect, the higher-order filter 0 0 ... 0
yields higher accuracy. Other influence functions exhibit sim-
ilar accuracy. 0 0 ... 0

An approximate filter can be found, as shown previously,
for each H,(t) and l,_(t). A complete set of these filters can pU 2  - 1 0 0
then be summed according to Eq's. (12a) and (12b). This would Bp a a p , (20e)

yield a dynamic system that has the generalized coordinates -
q,(t) and q.(t) as the inputs, and the generalized aerodynamic 0 - 0
forces Q,(t) as the outputs. This system is then coupled as M2

0.02 --
0 0 *..-

0.00 Exact Response M n -
Approximate Filter, 1=16 T

Approximate Filter. 1=8 up = {Q(t) Q2(t) ... Q,(t)} (20f)
C -0.02

S0... 0 0 0 ... 0
t -0.04 0 . 0 1 0 ."" 0

-0 1 ... 0 0 0 .. 0
-0.06 Fp 0 0 -'- 0 0 1 ... 0 (20g)

S-0.08
0 0 ... 1 0 0 ... 0

-0.10 0 0 2 00 0 0 0 ... 1
0 0.5 1 1.5 2 --

Non-dimensional time, s such that the output vector, which is equivalent to the input of

Fig. 2 Generalized force step response for exact and two ap- the aerodynamic system, is a reordered version of the panel
proximating filters, state vector:

---------------- ---------------- -------------.. -:Y = {q , 4t q 2  12  - qn q T (20 h )

P BB F P A filter of the form in Eq. (19) can be cast in state variable
form as follows:

x,6= Aj~xi + Bjpui (21a)Panel System ,=AX +BU(2a

S= Fixi, + Gpup (21b)

G .where

1 0 ... 0 0

A.A= 0 1 0 (21c)

Fig. 3 Statespace schematicothesAerodynamic System.[ 0 0 "" 0
Fig.3 Stte-saceschematic of the complete aeroelastic system.0 0 .. 1 0
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[11 B ... o0 0

B.• (21d) 0 B, "

0 0 ... B, 0

0 0 0 B,,.
F? = [t62J -- "A 2/ 1 d• 1 - a1 621,/!] B. = . . . . . (23f)

(21e)
B,., 0 ... 0 0

G = [di/6 1] (21f) 0 B,., 0 0

The input is the appropriate panel generalized coordinate and
the output is the approximate convolution of the generalized 0 0 B.. BH, 0
coordinate and the influence function used in the filter calcu- 0 0 ... 0 B,__
lation of Eq. (17a). The states of the previous system are of FF
mathematical construct and have no physical significance. Full Fill Fr. F[1.1

At this point a representation of Eq. (12b) can be constructed Ff2l, F•2, FH2. F12. (23g)
for a single plate mode (m = n) as follows: : . :

1) The appropriate influence functions H,(iT) and I.(iT) L.F'm., Fi., F"F_ Fj_
are found by the numeric integration of Eqs. (12e) and (12f).

2) Two filters are constructed by solving Eq. (17a) for the G,,G,, G, 1. G;,
filter coefficients, one based on H,.(iT) and the other based
on I,.,,,(iT). G, (23h)

3) Each of these two filters is transformed to continuous time
using Eq. (18) and cast in state variable form according to Eq. -GIl., G1., G,_ GI
(21a). In general, the state variable representations associated
with H,,(iT) and I,(iT) will be referred to as the sets {AH., and the influence coefficients are incorporated as follows:
BH, FI_, GH-} and (A,_, B,_, F_., G,.}, respectively.

4) Finally, the state variable representations are combined G,_ = GH_ + S., (23i)
according to Eq. (12b) as follows:

GL = G1 ., + D_ (23j)
•° = Ax. + Bdu. (22a)

y. = Fox. + Grit° (22b) The panel and aerodynamic state-space models can then be
coupled together as shown in Fig. 3.

where The size of the state-space model can be further reduced by
taking advantage of certain symmetries in the influence func-

Y. = Q.(t) (22c) tions. The greatest reduction can be had by noting that H_ =
u. = (q. 4.)} (22d) -Hn and I_ = --. _. Furthermore, if more than one expansion

(22d) ]mode is used in the spanwise direction for a simply supported

A, [A_ 1..A 0 (22e) plate, the influence functions can be indexed such that H,_ --
S0 A,,_ Hp,, and I. --* Iv,. In this case, those influence functions

Bwhere q - sI is odd, are zero.

0 B,_ Results

F. = [F,_ F,_] (22g) To validate the coupled model, the system parameters were
varied and the flutter boundaries were compared to results

and the influence coefficients of Eqs. (12c) and (12d) are in- from the literature. Flutter boundaries were found by increas-
corporated as follows: ing the nondimensional dynamic pressure A and calculating the

coupled system eigenvalues. Flutter instability occurs when atG. = [GH, + S_ G,_ + D-] (22h) least one of the system eigenvalues lies in the right half-plane.
This is demonstrated in Fig. 4, which shows the distribution

The previous representation would be sufficient if the panel of the system eigenvalues. Note the distribution of the ap-
model had only one mode. This would result in only one term proximate aerodynamic eigenvalues. Those eigenvalues asso-
in the sum given by Eq. (12a). Multiple panel modes require ciated with the panel modes are contained in the zoom region
the extension of the previous representation to include all ap- indicated in Fig. 4. These results are for a panel with a/b
propriate influence functions. This more general representation 1.0, ic = 0.i, M 42.0, and using a four-mode expansion [i.e.,

is as follows: 10 .1 .,aduigafu-oeepnin[~.
N = 4 in Eq. (2)]. In this case, the frequency is nondimen-

ito = Aax, + Bu. (23a) sionalized such that k = (.a/U,,)(Ap)f'l.
Figure 5 is an expanded view of the zoom region of Fig. 4

y, = Fox, + GA,, (23b) and depicts the pole migration with increasing dynamic pres-
sure. In Fig. 5 eigenvalues at different dynamic pressure are

where connected with a line. Note the path of the complex conjugate
Y.=(Ql) Q2(1) ... Qj)I T  (23c) eigenvalue pair as they enter the right half-plane. Also note

that the only eigenvalues that experience significant migration

u. = {q, q, q2 42 ... q. q,}r (23d) are the complex conjugate pairs that are associated with the
panel modes. One of these two migrating pairs is the eigen-

A.,, 0 ... 0 0 value that becomes unstable.
& (23e) from the eigenvalue locus in Fig. 5 is the frequency of flutter.

I In Fig. 5 the frequency of flutter is between the first and second0 0 "'"A,.. 0 natural frequencies of the panel. This is consistent with the
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Fig. 5 Close-up locus of system eigenvalues with varying dy- Note in Fig. 6 that the three theories approach each other
narnic pressure, M =2.0. asymptotically as the Mach number increases. However, for

Mach numbers below 1.5, the theory incorporating linearized
6W0 potential flow aerodynamics predicts flutter boundaries well

below the others. Full potential flow theory predicts a mini-
Full Potenteial Flo mum flutter dynamic pressure of zero at a Mach number ofE 500 Hedgepedh. Ref. 9 u yaiPistonTheo 1.0. These results are consistent with those obtained by

Dowell.`7

400 A similar flutter boundary, for a square panel (i.e., alb = 1.0)
with 1. = 0.1 and using a four-mode expansion, is shown in
Fig. 7. These results are also consistent with those obtainedS300 by Dowell. Note in this case the minimum flutter dynamic

. pressure is nonzero.
cI 200 A final and interesting result is the effect of proportional"E modal damping on the flutter dynamic pressure. Figure 8
O 100 shows the flutter dynamic pressure, normalized with respect to
Z the undamped flutter dynamic pressure, as a function of the

modal damping ratio for three different Mach numbers. Pro-
0 portional damping is modeled as an additional term of the form

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2ý&o,4. to Eq. (3). Note that proportional damping has the
Mach Number greatest effect on flutter dynamic pressure at lower Mach

Fig. 6 Flutter dynamic pressure vs Mach number for a/b = 0. numbers.

Conclusions
A comparison of flutter dynamic pressure vs Mach number A new method for modeling the aerodynamic loading of

is shown in Fig. 6. Results are illustrated for a panel with panels that incorporates linearized potential flow aerodynamics
p = 0.1 and a/b = 0 (i.e., an infinitely wide panel). Also in- has been developed. This was accomplished by approximating
cluded in the figure are the flutter boundaries for a piston the- the aerodynamic generalized forces on the panel with discrete

- ory model and for an approximate, quasisteady aerodynamic time filters. These filters were coupled as feedback to the in
flutter boundary described by Hedgepeth. 9 vacuo panel model. The accuracy of the method was demon-
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strated by comparing results of this model with results ob- 'Dowell, E. H., "Generalized Aerodynamic Forces on a Flexible
tained in previous work. Future work will use this new aero- Plate Undergoing Transient Motion," Quarterly of Applied Mathe-
elastic model in optimal control studies. matics, Vol. 26, No. 3, 1967, pp. 2267-2270.

"6Dowell, E. H., Aeroelasticity of Plates and Shells, Noordhoff In-
ternational, Leyden, The Netherlands, 1975.
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